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ABSTRACT 

This paper presents an irrigation farm management tool, SALMOD (Salinity And 

Leaching Model for Optimal irrigation Development), that calculates the profit 

maximizing crop enterprise composition and irrigation management options for farm 

specific soil type, drainage status and irrigation system composition subject to various 

regional control measures and expected irrigation water salinities. After stating the 

water quality problem, and particularly salinisation in Southern Africa, the input data 

requirements and the results of SALMOD and their usefulness at farm level, are 

discussed. The impact of various possible regional or policy regulations are then 

discussed.  

SALMOD was developed for irrigators in the lower Vaal and Riet Rivers in South 

Africa. These farmers have been experiencing rapidly fluctuating salinity levels in their 

irrigation water, resulting in soil salinisation, yield loss and subsequent financial 

instability. SALMOD calculates the profit maximizing crop choice and distribution over 

the farm, matching the crop choice with soil type, drainage status and irrigation system, 

indicating the optimal leaching vs. yield reduction seasonal management options as 

well as calculate long term management options such as underground drainage 

installation, a change in irrigation system or the construction of on farm storage dams. 
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Leaching is necessary to maintain an acceptable salt balance in the root-zone of 

irrigated crops. This however contributes to point and non-point source water pollution 

externalities if not managed correctly.  Results show valuable policy information 

regarding the interactions between artificial drainage subsidisation, return flow 

restrictions and on-farm storage. 

Keywords: Irrigation, water quality, return flows, salinisation, leaching, non-point 

source pollution, on-farm storage, SALMOD, linear programming, GAMS 

PROBLEM STATEMENT 

Irrigation agriculture as a contributor to non-point-source water pollution externalities 

through nutrients, salts and chemicals in return flows is a global problem and one of 

growing concern in South Africa. Backeberg et al (1996:22), states “water quality is 

becoming of increasing concern to irrigation, both from a supply point of view and with 

respect to the environmental impacts of irrigation.” 

Leaching, the process of applying water over and above the requirements of the plants 

irrigated, is an irrigation management practice used to “flush” a certain amount of 

accumulated salts out of the root zone to maintain an acceptable salt balance. This 

practice is often considered by non-specialists as wasteful, especially as irrigation 

engineers and scientists appear to be in doubt about the required leaching rates and the 

efficiency of the leaching practice (Kijne et al, 1998).  

Where no regulation exists, the seepage from leaching flows back into the river or 

groundwater carrying high concentrations of salts, further degrading the water source 

and creating secondary costs through externalities for downstream users and the 

environment. The paradox however is that without leaching the salts inherently found in 

soil, or those deposited by irrigating with poor water quality out of the soil, salts 

accumulate, degrading the soil to levels that can no longer support viable crop 

production.  

SALINITY DEFINED 

The concentration of total dissolved salts (TDS) (usually measured in mg/l) increases in 

static and slow moving water bodies subject to large scale evaporation, as well as 

according to Basson, (1997:57) in rivers and river reaches receiving large quantities of 
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effluent, mainly due to salinity build-up which results from the addition of salts through 

most uses of water. Construction of dams and weirs in a river course for the purpose of 

water storage, often lead to the problem of salination because, except for increasing the 

susceptibility to evaporation, they also make the water available for use and reuse.   

If the TDS concentration in water is high enough the negative effect of irrigating with 

such waters can be immediate through foliar damage from contact, alternatively salts 

accumulate in the soil over time. A high salt concentration in a soil body creates a 

physiological drought for the crops planted therein.  

Electrical conductivity (EC) usually measured in milli-Siemens per meter (mS/m) is an 

indirect measure of the concentration of the total dissolved salts in solution. EC is 

related to TDS by multiplying by a factor of between 6 and 7 depending on the 

composition of dissolved salts (DWAF 1993:31-35). 

DATA REQUIREMENTS 

SALMOD has to be initially set up for a specific irrigation area or farm, entering the 

regional operating data such as the standard irrigation quota size, irrigation water tariffs, 

the water over-use fine structure, etc. Next average regional or farm level crop 

enterprise budgets need to be set up for the most important and possible alternative 

crops grown in the irrigation region. For these crops the regional crop water 

requirements and monthly usage have to be obtained and also entered into SALMOD, as 

well as the crop gradient and threshold tolerance to salinity as determined by Maas and 

Hoffmann (1977). 

Due to the immense variability in biological/natural systems when dealing with grouped 

averages, acceptable average or representative values have to be determined for use in 

the model. The ECe (electrical conductivity of the saturated soil paste) variability within 

an irrigated field for example varies immensely, both across the surface area of the field 

and in soil depth.  This variability could be captured if measured regularly and very 

intensively at a specific in field level, but would be far too time consuming and 

expensive to measure for a whole farm. A manageable level of standardisation and 

aggregation needs to be attained, thus the need for value judgements that are acceptable 

and widely applicable. 

The value judgement data used in SALMOD include the following: 
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- The maximum leaching fraction ability of the irrigation systems used, 

- The maximum leaching ability/infiltrability of the soil types and drainage classes, 

- Irrigation drainage cost for the different soil types classified according to clay %, 

- Aggregate irrigation system transfer costs, 

- Irrigation system plant water uptake efficiencies and 

- Irrigation water to soil saturation extract electrical conductivity conversions. 

Once SALMOD has been set up for an irrigation region the data as set out in Text Box 1 

is required for optimising cropping composition, resource use and management option 

combinations at farm level. This data comprises irrigable area, irrigation rights (the 

number of hectares a farmer is allowed to irrigate with a fixed water quota), water costs, 

pumping costs, monthly average or expected irrigation water electrical conductivity and 

the hectares of irrigable soil divided into soil type, irrigation system used and soil 

drainage class. 

( 

Text Box 1. Data re
2000, as an example

 

 

quired for running SALMOD scenarios using Olierivier farm, 
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SALMOD METHODOLOGY 

SALMOD, developed in GAMS (General Algebraic Modelling System), uses a linear 

programming optimisation tool to model all farm level management options and 

possible crop combinations to find the profit maximising choice of crops and 

management options under different water quality and external policy scenarios.  

The model consists of a simulation section in which, from a basic crop budget for each 

of the main crops grown in the study area, crop enterprise budgets are simulated for a 

range of soil types, irrigation technologies, water qualities, soil drainage abilities, 

leaching fractions and expected yield percentages. The resulting net returns from the 

various crop enterprise combinations are then incorporated into the linear programming 

optimisation section where the optimal crop enterprise combination is chosen, subject to 

various constraints such as land size, soil permeability, water price and availability and 

best management practice crop rotational constraints. The model makes provision for a 

farmer exceeding his water quota by charging for increasing increments at an increasing 

block rate tariff structure. Also where the annualised costs of artificial drainage 

installation and alternative irrigation systems are offset by the increased returns they 

generate, this is automatically accounted for in the model. 

The simulation section determines a range of gross margins and water requirements for 

all possible combinations of six crops, four soil types, four soil drainage statuses and 

three irrigation system combinations for each of two methodologies, resulting in 

approximately 1700 crop combination activities for the optimisation section in 

SALMOD. 

A limitation in previous methodologies for calculating the relative yield of a crop 

irrigated with saline irrigation water was that EC was assumed constant. From the 

various methodologies suggested on how the average EC can be determined over a 

season with fluctuating receiving water salinity, the most suitable method is to calculate 

the average EC weighted for irrigation water volume and quality and rainfall volume 

and quality. A worked example of the process followed in deriving the weighted 

average electrical conductivity (EC) of the water used by the plant (i.e. irrigation water 

and rainfall) is shown in Table 1. 

Crop specific data required in this hypothetical example is the potential yield, total crop 

water requirement, threshold and gradient. For SALMOD the potential crop yields were 
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verified in a technical meeting, the total crop water requirement obtained from the 

OVIB (Orange Vaal Irrigation Board) and the threshold and gradient values form Maas 

& Hoffmann (1977). The values used in this example are a potential yield of 1000 

kg/ha, a total crop water requirement of 1000 mm/ha, an ECe threshold value of 200 

mS/m and a yield decline with increasing ECe gradient value of 0.7 %/mS/m.  

Other monthly data required are the salinity of the irrigation water, percentage 

requirements of the total crop water use and rainfall. As the salinity indication of the 

irrigation water is usually measured as TDS in ppm or mg/l, TDS of the irrigation water 

(iw) has to first be converted to ECiw by the following formula derived for the specific 

irrigation area: 

ECiw = 0.1572 .TDSiw – 2.2295       (1) 

ECe is then derived form ECiw by multiplying ECiw by a factor of 2. The TDSiw for 

the months of July to December, assuming these are the months that the hypothetical 

crop is in the ground, appear on the left in the table, together with the conversion to 

ECiw and ECe.  

The monthly water requirement percentage (MW) is converted to a monthly water 

volume (MWV) required by the crop and multiplied by the monthly average ECe. The 

sum of the products of MWV and ECe over all months that the crop is in the ground is 

then divided by the total water requirement to give the average ECe weighted for 

irrigation water requirements alone.  

Pure rainfall however also contributes to salinity dilution and leaching, but because of 

overlaps of irrigation events and rainfall, runoff and deep percolation, not all rainfall is 

utilised by the crop, or for leaching purposes. For this reason, only effective rainfall 

(ER) is accounted for. According to Van Heerden (2000), citing “the Green book”, ER 

is calculated by subtracting 20 from the monthly average rainfall and dividing the result 

by 2. Monthly ER is then multiplied by the EC of rainwater (ECr) assumed to be 

1mS/m, and added to the monthly ECe weighted for water to give the results in the right 

hand side of Table 1. 

The sum of the products of MWV and ECe plus the sum of the products of ER and ECr 

over all months that the crop is in the ground is then divided by the sum of the total crop 
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water requirement and effective rainfall to give the average ECe weighted for irrigation 

water requirements (MWV) and effective rainfall (ER). 

Table 1.  A hypothetical example of the determination of the average ECe to which 
a plant is subjected over its growing season, weighted according to monthly crop 
water requirements (MW) and effective rainfall (ER) 
Crop yield (kg): 1000 Rainfall EC (ECr) (mS/m): 1 
Crop water requirement (mm): 1000 ECiw to ECe conversion factor : 2 
Threshold (mS/m): 200 TDSiw to ECiw conv. factor (CF): y = 0.1572x - 2.2295 
Gradient (%/mS/m): 0.7 Effective rainfall (ER) formula : = (Rainfall - 20) / 2 

 

TDSi
w 

(ppm  
or  

mg/l) 
ECiw 

(mS/m) 
ECe 

(mS/m) 

Mon-
thly 

Water  
(%) 

Monthly 
water 

volume 
(mm) 

ECe 
weight
-ed for 
water 

Rainfall 
(mm) 

Effective 
rainfall 
(mm) 

Ave. ECe 
weighted 
for water 

& ER 

MONTH 
TDS TDS x 

CF2 ECiw x 2 MW MWV ECe x 
WV Rain Rain - 20  

2 

ECe x ( 
MWV+ 

(ER x ECr)
Jul 626 96 192.2 0.029 29 5575 1.8 0 5574.8
Aug 691 106 212.7 0.075 75 15955 7.5 0 15954.5
Sep 762 118 235.2 0.206 206 48445 12.3 0 48444.9
Oct 747 115 230.3 0.347 347 79911 28.4 4.2 79915.0
Nov 713 110 219.6 0.343 343 75308 29.6 4.8 75312.9
Dec 595 91 182.5 0.000 0 0 42.3 11.15 11.2
TOTALS:       1.000 1000 225193 121.9 20.15 225213.4

Averages: 689.7 106.0 212.1  Weighted: 225.2  Weighted:  220.8
Rel.Yield:   91.5% 82.4%  85.4%

 

The average ECe weighted for irrigation water requirement and effective rainfall, 

calculated in Table 1 as 220.8 mS/m, is inputted into Equation 2, together with the crop 

threshold and gradient to give the percentage of maximum yield obtainable under the 

average ECe conditions. 

RY = (100 - Gradient . ( Ave.ECe - Threshold))/100   (2) 

Where the relative yield percentage (RY) is the fraction of maximum yield obtainable 

for the average ECe (Ave.ECe). Gradient and Threshold are crop specific values as 

determined by Maas & Hoffmann (1977). The RY for each crop (c) is a function of the 

soil type(s), drainage status (ds) of the soil and leaching fraction (lf) implemented. 

The RY calculated using average ECe weighted for monthly water requirements 

(MWV) alone (225.2 mS/m) is 0.82 resulting in a 823.6 kg/ha yield if the maximum 

yield is 1000kg/ha, while the RY calculated using average ECe weighted for MWV and 

effective rainfall (ER) (220.8 mS/m) is 0.85 resulting in a 854.6 kg/ha yield if the 
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maximum yield is 1000kg/ha; this is a 3.6% improvement. Not accounting for monthly 

water use and rainfall results in a 6.7% over-estimation of the crop yield. 

Table 2 lists the limitations and resulting assumptions for which the average ECe is 

calculated. Although very simple, this methodology is more applicable to conditions of 

rapidly fluctuation irrigation water salinities, as is the case in the study area, than simply 

using an average ECe value held constant over the growing season of the crop planted. 

Table 2. The limitations and resulting assumptions for the methodology used to 
calculate average ECe 

Data: Limitation: Assumptions: 

TDSiw to ECiw conversion 
factor: 

Different depending on origin Same origin throughout season 

ECiw to ECe conversion 
factor: 

Depends on soil type & drainage 
status 

Cropping unit homogeneous & 
stays the same for whole season 

Effective rainfall values: Monthly totals, doesn't take 
intensity / distribution into 
account 

Equal distribution and intensity & 
runoff / wastage factor of 20mm 
(Van Heerden, 2001) 

Threshold and Gradient 
values: 

Don't make provision for different 
salt sensitivities at different 
physiological stages of growth. 

Constant for whole season 
(Information limitation) 

 

Once the relative yield percentage (RY) has been calculated as in equation 2, the final 

step of the simulation section is to set up the range of crop/resource combination gross 

margin above specified costs (GMASCc,s,ds,lf) to be transferred as the decision variable 

coefficients (GMi) into the optimisation section of SALMOD. 

GMASCc,s,ds,lf =PRICEc* MEYc*RY c,s,ds,lf  - FVCc - HCc*RY c,s,ds,lf    (3) 

Where: PRICEc  is a vector of selling prices for each crop (c) 

 MEYc  is a vector of the maximum expected yield of each crop (c) 

 FVCc  is a vector of the variable per hectare production costs for each crop 

(c) excluding the water price and pumping costs 

 HCc  is a vector of the per ton harvesting costs of each crop (c) dependent 

on the calculated relative yield (RY) 
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The structure of the linear programming problem in its most basic form is as follows 

(the complete mathematical model is available in a forthcoming WRC report by the 

same authors): 

Maximize  π  =  ∑n
i=1 GMi . Xi   (i = 1, 2, … , n) (4) 

Subject to  ∑n
i=1   Aij  .  Xi   ≥  ,  ≤   or =  Rj  (j = 1, 2, … , m) (5) 

and    Xi  ≥ 0        (6) 

where:   π is net return / profit / total gross margin above specified costs 

  GMi are the gross margins for activity i  

  Xi are the decision variables of activity i  

  Aij  is a m x n matrix of constraint coefficients 

  Rj  are the constant constraint values of constraint j 

The objective function (4) is to maximise farm net return (π) (or the TGMASC) by 

choosing the optimal level of activity (X) from the range of choice variables Xi  (i = 1 to 

n) multiplied by the objective function coefficients, GMi (i = 1 to n) which are a set of 

constants; which in SALMOD are calculated in the simulation section of the model. In 

equation line 5 the objective function is subject to j (j = 1 to m) constraints. The levels 

of these constraints, Rj are also constants. The coefficients of the choice variables (Xi) in 

the constraints are denoted by Aij. Since there are m constraints in n variables, the 

coefficients Aij form a rectangular matrix with an m x n dimension. Equation line 6 is 

the non-negativity constraint of the choice variables.  

MAIN RESULTS 

The results generated by SALMOD provide the following: 

- The maximum attainable farm level total gross margin above specified costs 

(TGMASC) under various water quality and management scenarios. 

- The optimal combination of leaching fraction and yield reduction management 

options to implement to attain the maximum farm level TGMASC over a 

production year. 

- The identification of the main factors of production constraining attainment of 

optimal TGMASC. 
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- What the farmers can indirectly afford to pay for irrigation water of various 

qualities (salinities) in a free market water system. 

- What the impact of various management scenarios and constraints will be on the 

dual or shadow value of irrigation water. 

- How a farmers crop composition is expected to change as water quality changes. 

- What the impact of restricting irrigation return-flows would be on the TGMASC 

of the farmer. 

Results show optimal enterprise composition under various water quality situations. 

Artificial drainage installation and leaching are financially justified under certain 

water/soil quality scenarios. The results are also a strong motivation for a change in the 

current water pricing and quota allocation system used in the study area in South Africa. 

Useful data generated by SALMOD for use in environmental impact assessment are the 

estimated volumes of salt loaded return-flows that either leach into groundwater 

aquifers or are returned into the river system as a “diffuse pollution source”. The model 

gives a good indication of a farmer’s specific contribution to the diffuse or non-point 

source pollution problem. The economic effects of constraining return-flows and the 

effects of water pricing policy on the volume of return flows are also determined.  

The shadow prices (dual values) calculated in the linear programming model indicate 

the price that resources should rise or decline to be incorporated into the optimal 

enterprise combination - for instance, the price that a farmer can afford to pay for water 

of a certain quality. Results clearly indicate that irrigation water resources of different 

qualities are different commodities for which different rates should be charged. 

Text Box 2 in which the results calculated by SALMOD are displayed, is a continuation 

of Text Box 1 that lists the farm level set up data. The results show optimal 

crop/resource composition, water use, fines, financial returns and constraints. Looking 

at Maize in Text Box 2, the first crop included under optimal crop composition as an 

explanatory example, SALMOD calculates that 25.1 hectares are to be planted on the 

loamy sand soils (LMS) with  limited drainage (LDS) under flood irrigation (FIS). The 

optimal crop management options calculated are to apply a 10% leaching fraction 

(LF10) and accept a 94% of the maximum attainable yield. The gross margin above 

specified costs (GMASC) for maize panted under these conditions is R3 154 per hectare 
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and water usage will be 0 mm in the pre-year (winter growing season) and 19512 mm 

for the 25.1 hectares in the after-year (summer growing season). 

 

Text Box 2.  An example of the farm level results generated by SALMOD using the 
Olierivier farm, 2000, as an example 

Next the total water usage, cost and fines are displayed, showing a total water overuse 

of 70500 mm for the total irrigated area and a total water overuse fine of R35 673. The 

estimated farm total gross margin above specified costs (or optimal net revenue) is 

calculated as R662 312, and subtracting the pre-determined fixed costs of R561 000 

from this gives the farm profit of R101 312. The production capital loan of R300 000 is 

fully utilised  with the dual or shadow value 0.2843 indicating that for every R1 extra 

production loan the farmer could get, he could increase farm profits with an additional 

R0.28. This provides and indication to the farmer of the interest rate he could afford to 

loan additional money at. The fixed capital loan requirement of zero indicates that the 

farmer needn’t implement any long term fixed capital improvements such as installing 

underground drainage, changing the irrigation system or building on farm  storage for 

irrigation return flows. 

Text Box 3 show the same basic information as Text Box 2, but for a parametric range 

of irrigation salinities. The results show the impact on farm level total gross margin 

(above specified costs), optimal crop composition and financial value of extra irrigation 

water (water fine shadow values) of changing irrigation water salinity.  
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Besides the farm level management option results generated by SALMOD, answers for 

the following questions/scenarios regarding the external operating environment can also 

be generated:  

- What would be the impact on farm profitability if the price of water or electricity 

were to increase?  

- What would the impact be of a policy limiting the volume of returnflows 

allowed off the farm? 

- What would be the impact if the water quota volume allocated were to be 

reduced?  

- What would the impact of different water quality scenarios be on all the 

questions above? 

 

Text Box 3.   An example of the parametric irrigation water sensitivity report 
results generated by SALMOD using the Olierivier farm, 2000, as an example 
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CONCLUSIONS 

Salinisation has already reached critical proportions in many countries. With South 

Africa reaching the end of its available water resources within the next three decades, 

the volume of water use and reuse is expected to result in a rapid decline in water 

quality. With the successful quantification of the problem appropriate policy and 

management practices can be timeousely implemented to minimize the effects and 

magnitude of the salinisation problem, guaranteeing the sustainability of the 

communities that are dependent on and the environment that is affected by this most 

valuable natural resource. The implementation of SALMOD for optimising farm and 

irrigation board management options for fluctuating salinity in the Lower Vaal and Riet 

Rivers in South Africa has proved the usefulness of SALMOD for assisting in managing 

salinisation in irrigated agriculture. 

LIMITATIONS 

The dynamics of water -use, -pollution and -control are so tightly interwoven by a 

multitude of external factors that the traditional style of mono-disciplinary research is 

no longer suited to achieve overall satisfactory results (McKinney et al 2000). 

According to Blackwell et al 2000, current USDA Salinity Laboratory evidence 

suggests these interactions are far more complex than originally thought, and that 

Rhoades, the doyen of soil/plant/salinity interactions, contends that no one has 

succeeded in combining all the refinements necessary to overcome the inherent 

problems of relatively simple salt balance models and geophysical sensors, to address 

the enormous field variability of infiltration and leaching rates.  

Current literature and research on salinity management in irrigation agriculture also fails 

to capture the stochastic nature of inter-seasonal irrigation water quality as well as the 

cumulative economic and sustainability effects of irrigating with stochastic water 

quality levels. DWAF, 1996 mentioned the following in this respect: “Further 

limitations for setting criteria for salinity include: (i) The need to make assumptions 

about the relationship between soil saturation extract salinity (for which yield response 

data is available) and soil solution salinity. (ii) The deviation of the salinity of the soil 

saturation extract from the mean soil profile salinity, to which crops would respond. (iii) 
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The criteria for crop salt tolerance do not consider differences in crop tolerance during 

different growth stages.”  

These issues are proposed to be addressed in a follow up study by the same authors 

entitled “Multi-dimensional Models for the Sustainable Management of Water Quantity 

and Quality in the Orange-Vaal-Riet Convergence System” due for completion at the 

end of 2004. 
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