DuPont Biofuels: Building a Sustainable Future

Dennis Magyar Industry Manager North America DuPont Biofuels IFMA 17 · July 22, 2009

DuPont™ Renewably-sourced™ Materials

DuPont Mission - Sustainable Growth

The creation of shareholder and societal value while we reduce the environmental footprint* along the value chains in which

we operate.

DuPont defines "footprint" as all injuries, illnesses, incidents, waste, emissions, use of water and depletable forms of raw materials and energy.

Applied BioScience Platform at DuPont

exploring "carbohydrate" based business opportunities

Biofuel Demand Drivers and Market Issues Transportation Fuels - Abundance of Issues

Pending demand increase for transport fuel Global concern over the environment

Biofuels

40 - 60 BGY Opportunity*

Real concern over security of supply and cost

Increasing demand on agriculture

World continues its historic change...

Energy is the globe's greatest economic <u>threat</u> and <u>opportunity</u> over the next decade

July 22, 2009

* 2020 DuPont estimate

 $\ensuremath{\textcircled{\sc c}}$ 2009 E.I. du Pont de Nemours and Company. All Rights Reserved.

Global Biofuel 'Value Chain' Challenges

Upstream

Feedstock Adequate Regional Supply Developing Non-food Feedstock

Downstream

Refinery & Pipeline Biofuel Compatibility With Existing Gas Refinery Infrastructure

Retail & Consumer Uncompromised Fuel Performance Compatibility with existing infrastructure

Current biofuel solutions are inadequate to meet global needs

DuPont Technologies Address Market Challenges

Feedstock Options

PRODUCTION PER ACRE CELLULOSE CONVERSION

DuPont Danisco Cellulosic Ethanol LLC **Better Fuels**

REFINERY BLENDING FUEL COMPATIBILITY MILEAGE ENGINE DURABILITY

DuPont BP Partnership

Science with Service Delivering Success™

DuPont Biofuels: Three Strategies

Agricultural Inputs Seeds & Crop Protection

Solutions for Sustainable Feedstock

Biofuels From Biomass

Cellulosic Ethanol

Advanced Biofuels

Biobutanol

#1 - Solutions for Sustainable Feedstock

"more bushels per acre & more ethanol per bushel"

Science with Service Delivering Success™

Pioneer - the World Leader in Seed Genetics

Founded By Henry Wallace as the Hi-Bred Seed Company in 1926 - the first company to develop, produce and market hybrid seed corn

- ~\$4.0 billion in sales
- 8,500 employees
- ~\$2MM / day in research
- #1 or #2 position in most crops worldwide

Corn	Soybean
Canola	Sunflower
Alfalfa	Wheat
Sorghum	Rice
Hybrid Rice	Cotton

"more bushels per acre & more ethanol per bushel"

July 22, 2009

EMAL

Pioneer Corn Yield Growth Target

- Current rate of genetic gain is expected to double from today's 1.5% per year
- Pioneer is targeting a 40% growth in U.S. corn yield in the next 10 years
 - Current World Record: 442 bushels / acre
 - 154 bushels per acre in 2008 (US average)
 - 210 bushels per acre targeted by 2018

Factors contributing to yield lift:

Elite germplasm

July 22, 2009

- Accelerated Yield Technology (AYT) combination of breeding technologies and techniques that enable genetic gains far greater than any of the individual components
- Product positioning (getting the right product on the right acre)
- Next generation herbicide tolerance and insect protection more protection on more acres
- Agronomic traits drought tolerance, nitrogen use efficiency, disease and pest resistance
- Transgenic yield (corn trait target is 10% increase; soybean trait target is 8% increase)

Pioneer Research Focus

- Opportunities for crop productivity research include:
 - The need to make presently unusable soils productive
 - The need to increase the genetic potential of individual production and farming systems
- Pioneer is working on technologies to better utilize input resources
 - Drought tolerance traits in corn
 - Nitrogen use efficiency (NUE)

Pioneer Cellulosic Feedstock Development

Pioneer is evaluating options with alternative feedstock crops

- Cob and Stover characterization how much variation exists in existing corn genetics
- Define compositional improvement targets
- Exploration of new energy crop alternatives (switchgrass, sweet sorghum, other)
- Harvest and storage considerations
- Soil management and fertility how much residue should be removed
- Impact on farming operations (farming speed, management complexity)

#2 - Cellulosic Ethanol

Deliver Innovations that Transform the Market

Feedstock

Technology for Conversion of Non-Food Feedstock to Ethanol

DuPont Danisco Cellulosic Ethanol LLC

Uniting two leaders in cellulosic ethanol

- 50/50 joint venture between DuPont and Danisco/Genencor
- \$140 million investment over 3 years
- Commercialize integrated technology to produce cellulosic ethanol
 - Full license & engineering package including:
 - on site enzyme production
 - future design improvements
- Feedstock-flexible demonstration plant in 2009
- Commercial deployment
 - 25MGY cob plant in Midwest in 2012
 - 15MGY switchgrass plant in TN in ~2013

The Challenges: Path to Commercialization

- Technical Development
 - ➤Capital costs
 - Operating costs
- Develop Feedstock Supply Chain
- External Factors
 - ➢Political support
 - ►Market demand
 - ► Access to capital

The world's first robust, integrated solution for biomass-to-ethanol

Pretreatment

Enzymatic hydrolysis

Mixed sugar ethanologen

- Including: >>\$100 million invested since 2000
 - DOE & NREL support & collaboration
 - Significant enabling patent estate
 - Demonstrated capabilities in scale up & design

Demonstration Plant

Vonore, Tennessee

- Joint investment including \$40.7 million from Tennessee
- Nameplate capacity 250kgal/yr
- On-line 4Q 2009
- Process development unit, pelletizer on site
- Applications lab/ support capability
- Focus on optimal US feedstocks: corn cob and switchgrass

Technology Status – Key Metrics Cobs to Ethanol

	Initial Introduction	Current Estimates	Commercial Scale					
SELECT INPUT VARIABLES								
Enzyme Cost;								
Percent Reduction	100	100 70						
CAPEX; (\$ / Gal) (2008 Dollars)	\$8+	\$5 to \$7	~\$3 to \$5					
PROCESS RESULTS								
Total process yield; (Gal/T)	67	85	90					
MESP; (\$/Gal)	~ \$3.00	~\$2.00	~\$1.50					

Cellulosic Ethanol and Gasoline Trends

Price\$/gal is energy equivalent and \$50/ton biomass

July 22, 2009

IFMA17

The Challenges: Path to Commercialization

- Technical Development
 - ➤Capital costs
 - Operating costs
- Develop Feedstock Supply Chain
- External Factors
 - ➢Political support
 - ►Market demand
 - ► Access to capital

Value Chain Needs to be Organized

23

US Cellulosic Potential - DDCE Feedstocks

		Tons/	BGY	# 50	Sq miles
		Acre	Under	MGY	Required for feedstock
			КГЭ	Plants	
AND	Cobs	.65	2	40	60,000
. 25					
	Switchgrass	10	6	120	12,000
			(20*)		
A Sharan and	Sorghum	15	5	100	6,250
			(30*)		

* DDCE estimates for market potential with increased Cellulosic ethanol demand

Upstream Value Chain Formation

- Cob
 - Research in harvest, storage and transport
 - Challenges: Grower programs, densification, moisture issues
- Switchgrass
 - State of TN program \$30M for upstream development
 - Selected farmers received 3 year acreage based contract:
 - Incentive payment of \$450 /acre /year for costs of production and opportunity costs
 - Alamo switchgrass seed & technical expertise
 - Total program expanding to ~6,000 acres

Conclusions

- Cellulosic ethanol is ready for commercial deployment
- > Technical challenges have been largely met
- Remaining challenges are scale-up, investment & supply chain development
- DDCE is committed to the long haul and to building this industry
 - Demonstration Facility in 2009
 - > 25 MGY Cob plant in 2012
 - > 15 MGY Switchgrass plant in 2013

#3 An Advanced Biofuel - biobutanol

Deliver Innovations that Transform the Market

Refinery & Pipeline Compatibility With Existing Gas Refinery Infrastructure

Retail & Consumer Uncompromised Fuel Performance

Biobutanol the Advanced Biofuel BP & DuPont announced June 2006

Biobutanol Performance Advantages

REFINERY

TERMINAL

• DIVERSE AGRICULTURAL FEEDSTOCKS

BIOFUEL PRODUCTION

- UTILIZE ETHANOL PRODUCTION ASSETS
- SUPPORT AGRICULTURAL DEVELOPMENT

- FUNGIBLE BLENDING
- LOW VAPOR PRESSURE
- UTILIZE EXISTING INFRASTRUCTURE

RETAIL / AUTO INDUSTRY / CONSUMER

- 26% HIGHER ENERGY DENSITY THAN ETHANOL
- POTENTIAL FOR HIGHER BLEND LEVELS WITHOUT VEHICLE MODIFICATION (> 10%)
- NO INCREASE IN CO, HC, NOx EMISSIONS

July 22, 2009

The Challenge: Competitive Biobutanol COM

Biobutanol-Manufacturing

filed 2005

Biological Factory (Cell)

Toolset

- Microbiology
- Molecular Biology
- Biochemistry
- Genomics/Bioinformatics
- Protein Engineering
- High Throughput Screening
- Fermentation

reening

DuPont was First in World to Demonstrate Biobutanol via Synthetic Pathways - Patents Fermentation Metrics

- Rate
- Titer
- Yield

Biobutanol - Value Proposition

Biobutanol delivers significantly improved logistics & fuel performance across the value chain

Attributes

- Lower Distribution Costs
- Higher Blending Value and Higher Blend Levels
- Infrastructure compatibility
- Higher energy density (26%)
- Greater compatibility with existing engine designs and other materials
- Synergistic with Ethanol

Normalized ethanol price / Graph illustrates sources of value / Not to scale

Value Added Pricing

Biobutanol - Value Proposition

Break through the "Blend Wall" which is the point where regulatory obligations for ethanol blending exceeds what can be sold in the marketplace

- Barriers to breaching the blend wall
 - Permissible blend levels in fuel
 - Capabilities of existing car park
 - Retail infrastructure

Options for breaking through the blend wall --

Fuels

- Increased blend levels for all vehicles
- Increase blend levels for some vehicles
- Increased E85 sales

Biobutanol

Vehicles

- Extend warranties on existing vehicles
- Increase capability of new vehicles
- Increase FFV sales

Biobutanol

<u>Retail</u>

- Recertify existing retail kit
- Replace/Upgrade existing kit
- Install E85 Pumps
- Biobutanol

Biobutanol Commercialization Strategy

- Scale-up technology from lab to demonstration plant to commercial production
- Work with biofuel producers, regulators, policy makers, and OEMs to qualify and accelerate global adoption of biobutanol
- License biobutanol technology to other companies
 - Ethanol plant conversion to biobutanol production
 - Greenfield biobutanol plants
- Enable supply chain and distribution network for biobutanol product globally

Conversion to Biobutanol

Key Modification Areas:

- Fermentation
- Distillation

using...

- Standard equipment
- New microorganism
- New operating procedures

Biobutanol Commercialization Strategy

Large Fleet Vehicle Testing

Biobutanol Technology Demonstration Plant

- Biobutanol demonstration plant sited on existing BP site at Kingston upon Hull in UK
- ➤Completion in 2010

- Accelerate availability of commercial technology for scale-up to 50-100MM GPY
- Same site as 100 MM GPY ethanol plant

Biobutanol Process Performance & Commercial Demonstration

Summary

DuPont Delivers Innovations that Transform the Market

Upstream

Feedstock

Cellulosic Ethanol

Downstream

Refinery & Pipeline

Retail & Consumer

Biobutanol

Thank you!