XIX IFMA CONGRESS

"Transforming agriculture – between policy, science and the consumer" Warsaw University of Life Sciences, July, 21-26, 2013

"Newest Developments in Plant Breeding"

Prof. Edward S. Gacek Research Centre for Cultivar Testing (National Plant Variety Office) Słupia Wielka, Poland www.coboru.pl

R. I. Mast water his

Introduction

- > over the last decades agricultural production have increased significantly, thanks to:
 - specialization of farming systems, and
 - breeding of high yielding and adapted cultivars
- > however, major questions have arisen concerning the economic, social and environmental costs, associated with high input production
- Farmers are faced with many limiting factors and seek varieties that are both adapted to their different production systems and environments
- > the need for innovation, mainly through different new varieties is more relevant, than ever

Characteristics of modern plant breeding (1)

- half of the increases made with regard to agricultural productivity, are the result of progress in genetics and plant breeding
- > it is of vital importance to promote the development varieties:
 - helping us, to achieve stable and high productivity
 - * at the same time needing less inputs, and
 - being more resilient and better adapted to the effects of climate change
 - * conservation varieties, populations (CCPs) and farmers' varieties
- b the dominating pedigree line breeding approach, has narrowed the genetic base of many of our crops

Characteristics of modern plant breeding (2)

- > over the last decades, plant breeding has greatly benefited from:
 - * precision phenotyping
 - genomics
 - bio-informatics
 - and other molecular tools, to monitor heritable variation during selection
 - development of relevant intellectual property protection systems for the plant breeding and seed industry
- > seed and plant variety legislation, including an effective legal protection mechanisms of varieties and plant-related innovations, are at the core of bringing modern varieties to farmers fields

Characteristics of modern plant breeding (3)

- Many countries are struggling to facilitate ready access by farmers to recent breeding gains
 - millions of farmers in Africa, Asia and Latina America grow outdated, local varieties, and
 - * they suffer from the lack of information about newest ones
- > different markets in these areas, combined with different innovation systems, require different breeding approaches
- problems with dissemination of knowledge to key stakeholders (farmers', extention services, seed companies, policy-makers, national offices for registration and seed control, food industry and consumers)

Characteristics of modern plant breeding (4)

- Current plant breeding activities concentrate on three main directions, namely:
 - conventional pure line breeding programs, mostly in the large commercial breeding companies, aimed at development pure line varieties for conventional, high-input agriculture
 - evolutionary plant breeding programs, aimed at development of heterogeneous material, in the form of composite – cross populations (CCPs), to be used mostly in low input and ecological agriculture
 - participatory plant breeding (PPB) for sustainable crop improvement, aimed at breeding varieties adapted to local agro-climatic and agro-economic conditions

- > all decisions are taken by the breeders teams, and selection work done at breeders environments
- > final products conventional varieties, (with DUS/VCU criteria)

Line breeding approach (1)

- **>** the type of breeding work, aimed at uniformity:
 - * pure line varieties
 - open pollinated varieties
 - F₁ hybrids
- > the pedigree line breeding approach, has narrowed the genetic base of many of our crops
- > as a result, monocultural plant communities dominate modern agriculture

Line breeding approach (2)

- > monocultures are crops of a single species and a single variety
- > monocultures, very popular in world food production have today many failures, due to the loss of genetic diversity and the low resilience in many agro-ecosystems
- > more recently, major questions have arisen concerning the economic, social and environmental costs associated with line breeding approach, and high input production, in monocultures

Evolutionary plant breeding

- > final products: mostly populations (CCPs), without DUS,
- > developed during formal / informal research

Evolutionary plant breeding approach (1)

- become part of mainstream breeding research, nor has it been implemented in practice
- composite cross populations (CCPs) developed during evolutionary plant breeding process, cope better with stresses:
 - good resistance against pests and diseases
 - * ability to react to environmental and climatic variability
 - evolutionary adaptation to local conditions
- benefits of CCPs are not yet exploited in practice to higher degree

Evolutionary plant breeding approach (2)

- > over the last decade, research in evolutionary plant breeding has markedly intensified
- in addition, interest in evolutionary plant breeding is growing among farmers, breeders and policy makers
- b there are currently encouraging developments in the revision of seed legislation in the EU, that could lead to more room for evolutionary plant breeding approaches, in the future

Evolutionary plant breeding approach (3)

- > Advantages of growing CCPs, and other heterogeneous material:
 - higher level of genetical diversity
 - Iower disease and pests pressure, within the fields
 - * better buffering: more stable yields
 - * opportunity for adaptation to local / regional conditions
 - beneficial on the long term, for protecting agro-biodiversity

Participatory plant breeding

- > possibility to conduct direct selection in the target environments
- benefit from farmers experience and expertise in varietal evaluation in their particular environments
- > final products: farmers' varieties (diverse situation of their homogeneity)

Participatory plant breeding approach (1)

- participatory plant breeding (PPB) is an effective pathway to develop strains of crop varieties, adapted to local conditions, and to maintain genetic diversity among the varieties cultivated
 - the term of PPB refers to a set of breeding methods,
 characterised by many different potential forms of
 interaction between farmers and breeders
- PPB is characterised by varying degrees of interaction between farmers and breeders, at different stages of breeding process

Participatory plant breeding approach (2)

- > ,,complete participation breeding" (CPB),in which farmers and breeders collaborate continuously, throughout the breeding process
 - "participatory varietal selection" (PVS) in which the initial stages of the breeding process are performed exclusively by breeders, and farmers participation is restricted to evaluating finished material
- participatory crop research is often built on the same model as conventional research, only with the added element of participation from farmers

Participatory plant breeding approach (3)

- PPB enables crop to evolve under the combined effects of natural and artificial selection, and
- > takes into account the diversified management practices, needs, expectations and traditions of farmers and consumers preferences
- in this approach breeders produce of improved germplasm (populations and/or varieties) specifically adapted to the above mentioned conditions
- 47 countries, have or have had PPB programs on 26 crops, mostly in Africa, Asia, Latin America, to some extent in USA, Canada, and to very small extent in southern EU countries

Some aspects of intellectual property protection in plant breeding (1)

- in order to stimulate innovation in conventional plant breeding, legal protection mechanisms, are needed:
 - * for new plant varieties (fulfilling DUS requirements)
 - for plant- related innovations, being products of modern biotechnology
 - * for enabling technologies

Some aspects of intellectual property protection in plant breeding (2)

types of plant innovations in plant breeding:

- new plant varieties
- * phenotypic traits (genes, genetic sequences, lab. tools, software etc.)
- some genetic resources
- * enabling technologies

Some aspects of intellectual property protection in plant breeding (3)

- Enabling technologies:
 - silencing technology
 - * promoters
 - * transformation technologies
 - vector systems
 - selection markers
 - hybrid systems
 - other

Some aspects of intellectual property protection in plant breeding (4)

- Plant variety protection (PVP), and UPOV:
 - the International Union for the Protection of New Varieties of Plants, known as UPOV, is an intergovernmental organization, with headquarters in Geneva (CH)
 - the UPOV system of plant variety protection (PVP) is designed to encourage innovation, in the field of plant breeding and seed production

Some aspects of intellectual property protection in plant breeding (5)

- > the UPOV Convention provides a sui generis form of IP protection, for the plant breeding community
- innovations in other areas of technology concerning plants, are covered by other forms of IP right, including in particular patents

Some aspects of intellectual property protection in plant breeding (6)

> To be eligible for protection, a plant variety have to be:

- ☆ distinct from existing, commonly known varieties (criterion <u>D</u>)
- ☆ sufficiently uniform (criterion <u>U</u>)
- * stable (criterion \underline{S}), and
- ***** commercially new (in the sense of its presence on the seed market

THANK YOU FOR YOUR ATTENTION