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Abstract 

 Methods are available to predict nitrogen needs of winter wheat based on plant sensing, but adoption 

rates by producers are low. Low adoption rates are likely due to economic feasibility. The objective of 

this paper was to develop a method to Bayesian update prior information about nitrogen application with 

precision sensing information and determine if Bayesian updated nitrogen recommendations increase the 

economic feasibility of precision sensing technology. Results indicated that Bayesian updated nitrogen 

recommendations were higher than precision sensing recommendations. However, the Bayesian nitrogen 

recommendations did not increase net returns. 
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1. Introduction 

Although extensive research on production functions has decreased uncertainty for producers when 

making a choice, precision sensing (PS) technology attempts to further decrease uncertainty by providing 

contemporaneous information. However, despite large expenditures directed to research and development 

of PS, adoption rates by producers are still low. This is most notable for PS technology to select fertilizer 

application. Whipker and Akridge (2009) found that 52% of dealers offered single nutrient controller-

driven variable rate application of fertilizer. Yet only 11% of acres planted to winter wheat (Triticum 

aestivum L) used variable rate application technology for any fertilizing application (ARMS, 2012). Lack 

of adoption by producers may be due to the marginal economic feasibility of PS. 

With respect to nitrogen (N) fertilizer application, economic feasibility of PS hinges on the capability 

of the technology to either 1) increase yields by recommending more N, or 2) retaining yields while 

recommending less N. Increasing yields by applying more N is an unlikely strategy for PS technology, as 

producers already apply more N than necessary i
1
n most years (El-Hout and Blackmer, 1990; Babcock, 

1992). Thus, economic feasibility, and the main reason for PS technology adoption, hinges on PS 

technology retaining yields while recommending less N than would be applied without the technology. 

The Raun et al. (2002, 2005) precision sensing system uses plant sensing of hard red winter wheat in 

February to determine recommended levels of topdress N. Previous research indicated that the Raun et al. 

PS system did lower input costs by recommending less N than farmer practice; however, the PS system 

recommended level of N did not retain yield levels (e.g., Biermacher et al., 2009; Boyer et al., 2011). The 

yield loss from the PS system recommended N could be due to an implicit assumption of zero prediction 

error, which is unlikely since weather after sensing affects potential yields 

                                                      
1 Note that this is an expected profit maximizing strategy as the nitrogen will be needed in some years. The marginal revenue of 

applying nitrogen when it is needed is roughly 6-10 times its marginal cost and thus it pays to apply nitrogen that is only needed 

once every 6-10 years. 
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Information that is currently not directly used by a PS system is information a producer has about a 

given field
2
. A producer does not possess perfect information about the functional relationship of 

expected yield and N. Instead, a producer has some knowledge of past N and yield levels and it is likely 

the error associated with an N choice decreases as a priori information increases. A Bayesian approach 

allows a producer to combine optical sensing information with prior objective – or subjective – 

information to decrease the error associated with the calculation of profit-maximizing N. 

A Bayesian approach has been applied in determining the economic value of weather information to 

agricultural producers (e.g., Doll, 1971; Baquet, Halter, and Conklin, 1976; Byerlee and Anderson, 1982; 

Marshall, Parton, and Hammer, 1996), projecting agricultural yield expectations (e.g., Krause, 2008), and 

determining returns of using soil sample information (e.g., Pautsch, Babcock, and Breidt, 1999). 

However, there has been no research on how Bayesian updating can improve profit-maximizing N 

recommendations by a PS system. 

We develop Bayesian methods to combine prior information with PS information. The results should 

be beneficial to wheat producers as N can have the largest effect on yield (Johnston, 2000) -- among 

chemicals -- and fertilizer costs may account for more than 30 percent of operating costs (Huang, 

McBride, and Vasavada 2009). Furthermore, advancement in PS profit-maximizing N recommendations 

may increase the adoption rate of precision agriculture, and thus benefit manufacturers of precision 

agriculture equipment. Moreover, increased adoptions of PS will likely decrease N application levels and 

consequently reduce negative environmental externalities associated with excess N application. 

 

2. Theoretical Framework for Applying a Bayesian Approach 

 to Parameters of a Production Function 

2.1. Prior Information 

Consider a risk neutral producer who maximizes expected profit with a choice set that is reduced to 

an N decision. The objective function for a producer can be represented by 

(1)       
                    

       −      

                                

where              is expected profit,   and   are known output price and N cost, and        is 

expected yield as a function of N, represented by    , prior information set   , and functional relationship 

of expected yield and N with parameter vector  . 

Previous research has generally favored plateau-type models over polynomial functions. We use the 

linear stochastic plateau of Tembo et al. (2008) since it was developed to match the production function 

assumed with Raun et al.’s (2005) precision nitrogen system. Tembo et al.’s stochastic plateau model has 

been used in many previous studies to estimate yield response to N (Biermacher et al., 2009; Tumusiime 

et al., 2011; Boyer et al. 2013) and can be expressed as 

(2)                                       , 

where     is the observed yield of location i in year t,     is level of N applied,           
   is the 

plateau year random effect,           
   is the year random effect,           

   is a random error term, 

and     ,     , and      (mean plateau yield) are parameters to be estimated. The stochastic variables (   , 
   ,    ) are assumed to be independent. A yield function estimated with data from previous years does not 

consider information about current growing conditions.  

                                                      
2
 Producers will sometimes intuitively apply a little more than the recommendation if it is less than their current practice or a little 

less if the recommendation is more, but they are not using an optimal Bayesian approach. 
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A producer likely thinks either in terms of expected yield, or a level of nitrogen, rather than in terms 

of the parameters of a production function. In practice, the parameters would need to be calibrated based 

on the producers expected yield and expected optimal level of nitrogen, as well as historical information 

for the field or region. For our research, historical data are available and thus an objective prior can be 

used. 

 

2.2. New information 

There are many PS systems available that vary by sensor type and nitrogen response index 

(Alchanatis, Scmilovitch, and Meron, 2005; Begiebing et al., 2007; Ehlert, Schmerler, and Voelker, 2004; 

Havránková et al., 2007). The N fertilizer optimization algorithm (NFOA) developed by Raun et al. 

(2002) and updated by Raun et al. (2005) has been produced commercially under the name 

GreenSeeker®, which uses an optical sensor and recommends a level of N based on mid-season growth. 

The PS algorithm used here corresponds closely to that of GreenSeeker®.  

The Raun et al. (2002, 2005) NFOA procedure can be separated into three processes: 1) estimate 

potential yield if no additional mid-season N is applied, 2) estimate maximum potential yield if additional 

mid-season N is applied, 3) calculate the required additional mid-season N to reach maximum potential 

yield. Note that the first and second processes of NFOA are essentially that same information as    and 

   in equation (2), but NFOA does not provide information similar to   . Also, note that producers could 

also easily be asked to provide subjective estimates of their yield goal and the amount of nitrogen to reach 

that yield goal, which could be used to derive the same parameters in equation (2). 

Processes one and two of NFOA are achieved by applying a non-yield-limiting amount of N to a 

narrow strip in the field before planting – also referred to as an N-rich strip. Then between Feekes growth 

stages 4 and 6 optical reflective measurements (ORM) are used to calculate a normalized difference 

vegetation index (NDVI) that measures the total biomass produced by the plant at the time of 

measurement. NDVI is divided by the number of growing days to arrive at an in-season estimated grain 

yield (INSEY). INSEY where the field-level pre-plant N has been applied is used to determine minimum 

potential yield and INSEY where the non-yield-limiting pre-plant N has been applied is used to determine 

maximum potential yield of a given field.  

Raun et al. (2002, 2005) use an exponential functional form for the relationship between yield and 

INSEY. We use a linear functional form since there is little difference in the explanatory power of the two 

functional forms and the linear functional form leads to a simpler computation for the Bayesian 

optimization problem. To calculate minimum and maximum yield potential for a given location and year, 

the linear model used was 

(3)                             , 

where         is INSEY for location i in year t,           
   is the year random effect, 

          
   is a random error term, and      and      are parameters to be estimated. Estimated 

minimum yield potential, represented by       , and maximum yield potential, represented by       , for 

location i in year t is found by 

(4)                                 
    

and  

(5)                                 
    

where               
    is average INSEY where felid-level pre-plant N was applied for location i in year t, 

              
    is average INSEY across plots where non-yield-limiting pre-plant N was applied for location i 

in year t, and       and       are the estimated parameters from equation (5). 
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2.3. Data used for Estimating Parameters 

Data from hard red winter wheat experiments conducted on agronomic research stations in Lahoma 

and Stillwater, OK, USA consisting of yields, amounts of N, and INSEY from ORM were used to 

estimate parameters. Observations on N applied and yield were collected in Lahoma from 1971 to 2012 

and Stillwater OK from 1969 to 2012. Observations on PS variables were also collected at these 

locations; however, PS technology is a relatively recent invention and thus PS data collection did not 

begin until 1999. The Stillwater location is missing observations for 2007, 2009, and 2010.  

Parameters for the prior information (i.e., equation (2)) and new information (i.e., equation (3)) were 

estimated for every year that both sensing and yield information were available using an out-of-sample 

approach, similar to Norwood, Lusk, and Brorsen (2004). That is, data collected from a given year were 

excluded when estimating parameters for that year. On the contrary, the average INSEY values (i.e., 

              
    and               

   ) were calculated for a given year using data only from that year. 

 

2.4. Combining Prior and New Information with Bayesian Updating 

As shown in Figure 1, the prior and new information contain analogous information, with the 

exception that new information does not provide an estimate of yield response to N. The process of using 

new information to revise prior information is the essence of Bayesian updating. Figure 2, adapted from 

Zellner (1971), schematically represents how prior information is used to estimate a prior density, new 

information is used to estimate a likelihood function, and the prior density and likelihood function are 

combined using Bayes’ Theorem to get a posterior density.  

The benefit of relatively quick computation is essential for a PS system that has limited computing 

power and may be used on the go. Therefore, we assume all densities are distributed multivariate normal.  

Prior information (i.e., historical yield and N levels), represented by   , can be used to estimate the 

relationship between expected yield and N in equation (2) and the vector of estimated parameters for the 

prior information is represented by 

(6)     

   

   

   

 ’ 

with covariance matrix 

(7)     

                                

                                

                                    
 

 .  

The prior density then is represented by       and is distributed         . 
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Figure 1. Representation of the relationship for parameters of the prior information and new information.  

 

 

Figure 2. The process of using new information to revise prior information. 

 

New information (i.e., PS), represented by  , can be used to estimate the minimum and maximum 

yield potential in equations (6) and (7). However, I does not measure yield response to additional N and 

therefore the vector of estimated parameters for the new information must be supplemented with the slope 

estimate. The new data is noninformative with respect to the slope parameter. Thus, the vector of 

estimated parameters for the new information is 

(8)    

    

   

    

 , 

with covariance matrix   equal to 

 

The likelihood function then is represented by        and distributed       . In practice, infinity is 

approximated with a large number to make the calculations tractable. 

The posterior vector of estimated parameters is a linear combination of the prior and likelihood 

vectors of estimated parameters (i.e.,    and  ). More specifically, the prior vector of estimated 

parameters is multiplied by the covariance matrix of the likelihood (i.e.,  ) and added to the product of 

the likelihood vector of estimated parameters and the prior covariance matrix (i.e.,   ). Both terms of the 

linear combination are normalized by the sum of the covariance matrices (i.e.,    and  ). Thus, the 
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posterior mean vector is a weighted average of the prior and likelihood mean vectors and the information 

with lower variance has a greater weight. Mathematically defined, the posterior vector of estimated 

parameters - derived formally in Duda, Hart, and Stork (2001, pp. 95-97) - is 

(9)          
 

 
  

  
  

 

 
     

 

 
  

  
   

with covariance matrix  

(10)          
 

 
  

   

 
  

Note that (10) and (11) assume that    and   are known whereas we are using estimates. Then, using 

   and the Cholesky decomposition   , the posterior density is simulated using Monte Carlo simulation 

with 10,000 iterations. The posterior density then is represented by        and distributed         . 

 

2.5. An Example of Estimated and Combined Parameters 

For illustration, Table 1 shows parameter estimates for the prior density and likelihood function and 

the calculation of the posterior density for Stillwater in 2012. The minimum and maximum yield potential 

in the posterior mean vector are bounded by the minimum and maximum yield potential in the prior and 

likelihood mean vectors. Thus, the posterior density mean vector is a weighted average of the two sources 

of information.  

 A benefit of Bayesian updating that should not be overlooked can be seen by comparing the 

covariance matrices. Combining the prior and new information decreases the variance associated with 

estimating minimum and maximum yield potential. 

 

Table 1. Parameter Estimates for Stillwater in 2012 
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a: ***, **, and * represent 0.01, 0.05, and 0.10 levels of statistical significance, respectively. 

b: Standard deviation, not a standard error. 

 

3. N Recommendations 

N recommendation following Tembo et al. (2008) were denoted by Ni
PI

, and a Bayesian N 

recommendation, denoted by Ni
B
, using prices from the United States Department of Agriculture National 

Agricultural Statistics Service (NASS, 2013a; NASS, 2013b). The price of a pound of urea for the 2013 

marketing year was $0.64 and this was used for the cost of N (r) and the price received for a bushel of 

wheat (p) in 2013 marketing year was $6.89.  

However, equating value of marginal expected product to the price of N may cause a producer to 

apply too much N. For example if            , then in four out of five years producers would be 

applying more nitrogen than was needed in that year. The optimal expected yield will be less than the 

expected plateau yield since in this example, in one year out of five, the maximum yield would not be 

reached. A perfect-information PS system would be able to achieve the plateau yield with an expected 

level of nitrogen of    −       , but any imperfect information system will have a lower yield and use 

more nitrogen. Nevertheless, the N recommendation for new information was found by 

(11)   
   

         

   
. 

New information recommendations were restricted to a nonnegative number as yield was greater 

when no N was applied in some years. The approach in (15) is essentially what was proposed by Raun et 

al. (2002; 2005). The approach led to too little nitrogen being applied, so with experience    , which is 

nitrogen use efficiency, has been reduced so that current formulas have been heuristically adjusted for the 

uncertainty. This heuristic adjustment is not considered here. 

 

4. Yield and Profitability Comparisons 

A linear plateau was estimated as a yield function with respect to N for both locations and for each 

year that both prior and new information were available. The linear plateau is 

(12)                     , 

where    is the observed yield of plot i,    is level of N applied to plot i,          
   is a random 

error term, and   ,   , and   (plateau yield) are parameters to be estimated. The N recommendations (i.e., 

Ni
PI

, Ni
NI

, and Ni
B
) were then plugged into the estimated linear plateau to arrive at the estimated yields. 

Additional to the estimated yields for the N recommendations, yields were also estimated for a constant 

application of 60 and 90 pounds of N.  

To determine economic feasibility, net returns were calculated for each estimated yield and 

corresponding N recommendation. Custom urea application rate of $4.85 estimated by Doye and Sahs 

(2014) was used for application cost.  

N recommendations and net returns for Lahoma and Stillwater are shown in Tables 2 and 3, 

respectively. On average, in pounds per acre, the prior information, new information, and Bayesian N 

recommendations were 59.33, 33.92, and 54.51 in Lahoma and 50.48, 28.14, and 42.13 in Stillwater. The 

average Bayesian N recommendation was not significantly different than the average prior information N 

recommendation in Lahoma (F-test, p-value=0.14); however, a Bayesian approach recommended less N 

than prior information in Stillwater (F-test, p-value=0.03). On average, for both locations, new 

information N recommendations were significantly lower than both prior information and Bayesian N 
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recommendations (F-test, p-value<0.01, for both locations).
3
 This confirms that the new information, 

NFOA, tends to recommend lower levels of N. The new information N recommendation had more 

variation than prior information and Bayesian N recommendations. However, this is partly due to new 

information to recommending zero N some years. A recommendation of zero N has the benefit of saving 

application costs (i.e., $4.85).  

Average net returns in dollars per acre for prior information, new information, and Bayesian N 

recommendations were 279.36, 270.02, and 279.33 in Lahoma and 143.33, 139.43, and 143.06 in 

Stillwater. Additionally, the net returns for a constant application of 60 and 90 pounds of N were 279.10 

and 289.25 in Lahoma and 149.17 and 149.47 in Stillwater. The only significant difference in net returns 

in Lahoma was between the new information N recommendation and 90lb of N (F-test, p-value=0.03). 

There were no significant differences in net returns across N recommendation in Stillwater. 

 

Table 2. Lahoma N Recommendations and Net Returns 

  
N Recommendation (lb/ac)  Net Returns ($/ac) 

Year 

 

Prior 

Information 

New 

Information Bayesian 

 

Prior 

Information 

New 

Information Bayesian 

60lb  

of N 

90lb 

of N 

1999  55.42 25.80 49.52  282.00 211.65 267.98 292.88 364.12 

2000  57.63 50.35 64.94  318.29 306.64 313.59 316.77 297.48 

2001  63.86 0 48.45  124.20 151.66 134.10 126.68 107.39 

2002  57.57 5.45 44.44  273.26 288.19 281.71 271.70 252.41 

2003  57.24 47.34 58.94  465.59 437.85 470.34 473.32 537.42 

2004  57.77 12.54 45.31  215.69 221.43 223.70 214.26 194.97 

2005  57.70 31.74 52.63  232.96 221.67 236.22 231.48 212.19 

2006  57.90 7.82 40.20  214.64 220.40 216.68 214.40 210.95 

2007  57.54 13.76 43.81  273.30 278.54 274.95 273.01 269.42 

2008  57.46 56.96 62.15  520.65 520.97 517.62 519.01 499.72 

2009  62.91 48.51 56.26  300.91 262.27 283.08 293.11 373.60 

2010  62.74 78.72 75.36  124.54 135.78 133.41 122.61 143.70 

2011  62.90 46.27 61.79  215.46 207.30 214.92 214.04 228.77 

2012  61.97 49.67 59.33  349.60 315.88 342.36 344.19 357.35 

           

Average   59.33 33.92 54.51  279.36 270.02 279.33 279.10 289.25 

Standard  

Deviation 

 
 2.73 22.64 9.53 

 
107.71 100.56 104.88 108.24 120.69 

 

 

 

 

 

 

 

                                                      
3
 Note that current implementation of NFOA recognizes that the plug-in approach leads to under application of N. To correct the 

problem, current models use a lower value of   in order to get closer to the optimal level. 
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Table 3. Stillwater N Recommendations and Net Returns 

  
N Recommendation (lb/ac)  Net Returns ($/ac) 

Year 

 Prior 

Information 

New 

Information Bayesian 

 Prior 

Information 

New 

Information Bayesian 

60lb  

of N 

90lb 

of N 

1999  44.75 0 25.98  110.11 87.71 98.68 119.39 112.71 

2000  48.67 67.05 59.67  174.09 198.31 188.59 189.03 228.56 

2001  43.77 7.18 33.62  134.66 109.01 130.57 124.22 104.93 

2002  48.94 39.74 44.54  152.28 141.26 147.01 165.52 201.45 

2003  49.77 40.18 46.18  171.00 161.64 167.50 180.99 210.29 

2004  59.71 0 27.79  141.19 204.20 172.29 140.91 111.69 

2005  50.90 35.44 48.69  181.77 181.96 181.80 181.67 170.19 

2006  59.17 33.24 50.14  33.83 54.81 41.66 33.12 7.10 

2008  47.88 9.14 33.73  193.79 147.56 176.90 208.25 213.65 

2011  52.52 53.57 54.58  81.77 81.95 82.12 83.04 88.13 

2012  49.16 24.02 38.55  202.10 165.28 186.55 214.71 195.42 

           

Average  50.48 28.14 42.13  143.33 139.43 143.06 149.17 149.47 

Standard  

Deviation 

 
4.84 21.15 10.51  48.83 47.45 46.90 53.20 66.13 

 

Table 4 shows how changes in the price received for a bushel of wheat effects net returns for the 

various N recommendations. Changes in price received does effect the ordering of net returns. For 

example, at the low wheat price (i.e., $3.45/bushel), an N recommendation from new information has the 

highest net return for both Lahoma and Stillwater. However, the only additional significant difference in 

net returns found from the sensitivity analysis was between the new information N recommendation and 

90lb of N at the high price (i.e., $10.34/bushel) for Stillwater (F-test, p-value=0.04). 

 

Table 4. Sensitivity Analysis of Net Returns for a Change in Wheat Price 

 Lahoma Net Returns ($/ac)  
Stillwater Net Returns ($/ac) 

Price 

($/bu) 

 

Prior New Bayes 

60lb  

of N 

90lb 

of N 

 

Prior New Bayes 

60lb  

of N 

90lb 

of N 

10.34  449.4 418.2 445.4 440.4 465.2  246.5 220.2 243.2 245.5 255.6 

6.89  279.4 270.0 279.3 279.1 289.2  143.3 139.4 143.1 149.2 149.5 

3.45  116.9 121.8 119.6 117.8 113.3  57.8 58.7 58.0 52.9 43.4 

             

Average  281.9 270.0 281.5 279.1 289.3  149.2 139.4 148.1 149.2 149.5 

SD  135.7 121.0 133.0 131.7 143.7  77.2 65.9 75.7 78.6 86.6 
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5. Discussion 

As the use of technology in agriculture increases, so will the economic value of technological 

knowledge. This does not render the knowledge of production practices by a producer useless. However, 

this is exactly the implications of any PS system that does not incorporate a producer’s prior information 

when formulating an N recommendation. Alternatively, new technology is capable of increasing the 

information set for a producer and will likely continue to provide more accurate N recommendations.  

This paper establishes a method Bayesian to combine PS and prior information about the response to 

N for a given field. Results suggest that PS technology recommended a lower level of N than standard 

practice or using Bayesian updating. Thus, increased adoptions of PS may have social benefits by 

reducing negative environmental externalities associated with excess N application, such as runoff into 

waterways and increased carbon emissions, without sacrificing net returns.
4
 

The approach taken in this paper is noisy, as PS data was not available prior to 1999 and the yield 

function used to evaluation the N recommendations was from one year of data. Moreover, data for the 

prior information may include an unobserved technological change in yield response to N. Nevertheless, 

the method within provides a foundation for Bayesian updating parameters of a yield function. Future 

research could build on this study by examining the differences between Bayesian updating of parameters 

to obtain an N recommendation, as done here, and Bayesian updating of N recommendations derived 

from separate sources of information. 
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