

Resilient farming systems: global challenges & potential contributions from agricultural science

Geoff Simm

Global Academy of Agriculture & Food Security, University of Edinburgh

Alistair Stott, Dominic Moran, Mizeck Chagunda *SRUC*

Resilience

- Concept: mechanics ecology psychology
- OED: The capacity to recover quickly from difficulties; toughness
- Moran: Systems that can withstand shocks using various forms of available capitals, are resource use efficient and so minimise external costs

Challenges / shocks

- Economic
 - local & global cycles in demand & supply
 - price/cost volatility
 - value chain relationships/power
- Political
 - changes in policy framework
- Environmental
- Societal

NZ beef & sheep farmers response to policy & economic challenges

Risk reduction

Resilience

- Lower inputs
- Increasing farm size
- Adopting technology
- Off farm income
- •

Martin & McLeay, 1998

Paronson-Ensor & Saunders, 2011

Disease prevention - risk reduction

Bovine Viral Diaorrhea, Scotland (Stott et al, 2003)

 Disease prevention measures can increase whole farm income & reduce variability (risk)

Zoonotic disease (TB, brucellosis), Malawi (Tebug et al, 2014)

 General awareness among farmers high, but risk behaviours practised

https://www.flickr.com/photos/ilri/5859564963/in/album-72157622888681191/

Global Challenges

Guiding frameworks/concepts

For example:

- Sustainable Development Goals
- Ecosystem Services
- Sustainability
- Farming Systems in Circular Bioeconomy
- •

Potential solutions

Production

- Sustainable intensification (more production less environmental impact)
- Food vs feed
- Long term, value chain-wide innovation
- Commercialization ('Global S')

Consumption

- Less ('Global N'), healthier, diverse, novel
- Waste less

Technological...

EU Waste Framework Directive (<u>EC, 2008</u>); *zu Ermgassen et al, 2016*; © IWM (Art.IWM PST 14743)

Food, Land Use, GHG nexus

- ↑ no. modelling studies
 - livestock role in GHG, health
- Min land use ~12% animal protein in diet (grassland, co-products) (Schader et al., 2015; Van Kernebeek et al., 2016)
- Meeting WHO nutritional recommendations in UK³
 - Less dramatic dietary change
 - ↓ red meat, dairy products, eggs ..., ↑ cereals, fruit and vegetables
 - 17% reduction in GHG; save ~7m life years lost (Milner et al, 2015)
- Modelling studies can miss complexity/nonlinearity
 - E.g. ↓beef in Brazilian Cerrado (decoupled from deforestation) could ↑GHG (de Oliveira Silva et al, 2015)

htps://www.flickr.com/photos/nancydregan/5023325968/ Kate Evans / Center for International Forestry Research

Impact of science in livestock sector...

ACRBC 1957 Males – 2001 Feed

Ross 2001 Males – 2001 Feed

Day 43

Day 57

Day 71

Day 85

PROSLIN

Havenstein, et al 2003

Food is relatively more affordable:

Guiding frameworks/concepts

Sustainability

Research priorities

Targets

- Innovative, dynamic, resilient, systems, with lower losses / externalities → long term, equitable societal benefit
- Healthy, quality products
- New feed sources
 - algae, insects, 'designer crops' ...
- 'New' farmed species
 - aquaculture, (insects, cultured meat)...
- Efficient, robust, healthy crops & animals
- Positive welfare
- Better matching of genetic & system

Technologies

- Molecular biology / genetics / genomics / gene editing
- Informatics / data science
- Remote sensing
- Precision farming

Scottish Aquaculture Innovation Centre

New breeding technologies

- GM widely used in crops globally (outside EU) soybean, cotton, maize, rice, canola
- GM not widely used in animals
- New technology of 'gene editing'
- Genomic selection major impact & livestock & potential in some crops
- Opportunity to address:
 - micronutrient deficiencies: iron, Vitamin A, iodine, zinc
 - climate smart traits heat, drought, flooding tolerance
 - disease & robustness/resilience

Markers (SNPs) spaced across all chromosomes

Better matching of genetics & systems

Household income from keeping different breeds in W Africa

Breed type and management level (L, M, H, HH)

Resilience capabilities

Contribution of new technologies?

Buffering

Adaptive

Transformative

Waste reduction / re-use
Resource use efficiency
Sustainable intensification
Drought /disease /nutritional challenge tolerance
Optimising genetic resource use
Precision farming
Data science / informatics
New breeding technologies

Translation of science to practice

Less...

https://www.flickr.com/photos/woodhead/6825087338/

More...

https://www.flickr.com/photos/andreas_klodt/27151819871/

Conclusions

- Economic, political, environmental, societal shocks well documented
- Frontiers
 - Food vs livestock feed (competition, bioeconomy)
 - Agri-food systems to improve diet & health (N & S)
- Technical opportunities to
 - ↑ resource use efficiency,
- Better evaluation of contribution to resilience

- More info including new courses:
 http://www.ed.ac.uk/global-agriculture-food-security
- Thanks for listening

Mitchell / Farrish

