

Harper Adams University

Farming with robots

National Centre for Precision Farming

Prof Simon Blackmore Twitter: ProfSBlackmore Head of Agricultural Robotics <u>simon.blackmore@harper-adams.ac.uk</u> <u>www.harper-adams.ac.uk</u> Director of the National Centre for Precision Farming <u>NCPF.harper-adams.ac.uk</u> Project manager of FutureFarm <u>www.FutureFarm.eu</u>

Harper Adams University

- Founded 1901 by Thomas Harper Adams
- Crops, Animals, Food, Land and Engineering
- Circa 2500 students
- Engineering department
 - Circa 300 students, 20 academics, 10 technical staff
 - Agricultural Engineering
 - Automotive Engineering (off highway)
 - Mechanical Engineering
 - Applied Mechatronic Engineering MSc
- Research into robotic agriculture
- "University of the year" from student feedback. April 2016

July 2017 - www.ifmaonline.org - Congress Proceedings

National

ecision Farming

National Center for Precision Farming

- Agri-drone centre
- Autonomous tractor
- Laser weeding and micro droplet application
- Robotic seeding and spraying
- Robotic phenotyping and crop scouting
 - Sub canopy sensing robot
- Autonomous mower
- Robotic strawberry harvesting
- Phenotyping robot for grass
- Hands-free-hectare

Agricultural Engineering Precision Innovation Centre (Agri-EPI)

- £18 million government investment in new company hubs to develop precision agriculture
- Help the UK's agri-food sector develop with advanced technologies that increase productivity and sustainability.
- Company to company and company to university R&D
- The Centre will have hubs in Edinburgh
- Harper Adams University and Cranfield University.
- 110 companies and institutions in all

• Precision

Farming in the future?

- Identify weaknesses in current farming system
 - Modern agriculture uses too much energy
 - Fuel in damaging and repairing the soil each year
 - Expensive chemicals being wasted by going off target and causing pollution
 - Large machines and practices are damaging the soil
 - Compaction and loosening every year
 - Intensive cultivation looses soil organic matter
 - Growth through economies of scale coming to an end
 - Machines have getting bigger due to driver costs but are now at their maximum size
 - Large machines are only good for large fields and small fields cannot use them
- Drivers for change
 - More sustainable food in a growing world population
 - Improve on-farm economic viability
 - Desire to have less environmental impact
 - Tighter legislation from EU and UK
 - Energy prices increase
 - More volatile weather due to climate change
 - More competition from world food prices
- Crop production must become more flexible and efficient
 - Intelligently targeted inputs

Farming systems

- Currently like an industrial production line
 - Maximising production (yield)
 - Large tractors doing the same work everywhere
 - Based on blanket application of energy (fert, spray,...)
- Need to move to flexible manufacturing
 - React to changes in real-time based on current conditions
 - Weather, growth, prices, legislation, incentives
 - More information intensive
 - Maximise gross margins
 - Manage risk
 - Minimise environmental impact
 - Automation

Economies of scale

- Big tractors and big implements
 - Increasing work rates and economies of scale reduces;
 - Driver costs
 - Cost and time per hectare
 - Large capital investment
 - Reached maximum size due to railway tunnels
 - No more savings through larger economies of scale
 - Good for large fields, cannot be used in smaller fields
 - Small to medium size farms and fields have the greatest potential for increased production with appropriate tech.

Limitations of big machines

- One size fits all
 - Large tractors often doing small work
 - Rarely using full power
- Boys toys
 - Big shiny tractors are always impressive
 - Small smart robots are also fun!
- Need for speed results in a self fulfilling prophecy
 - Small working window needs a bigger machine but the bigger the machine the smaller the working window.
 - Horsepower does not help when weight is the problem
- We cannot change the soil or the weather but we can change the tractor

Compaction

- Up to 90% of the energy going in to cultivation is there to repair the damage caused by large machines
- Repeated damage year after year
 Plough/damage, plough/damage, ...
- If we do not damage the soil in the first place, we do not need to repair it
- Natural soil flora and fauna produce the ideal soil structure (let the worms do the work)
- Move towards Controlled Traffic Farming and ultra light machines

Farming with robots

- Agricultural robotics is a new systems concept to help improve;
 - Food sustainability in a growing population
 - Greatest increase in production from the smallest fields
 - Average size of fields in Asia is about 1 acre
 - Lowering the cost of food production
 - Reducing the energy needed in agriculture
 - Protect environmental services
 - Very disruptive
 - Making crop production significantly more efficient

July 2017 - www.ifmaonline.org - Congress Proceedings

New concepts

- Zero draft force (no tractor)
- Intelligently targeted inputs
 - Micro tillage
 - Microdroplet application

Robotic seeder

- Ultra light, zero draught force
 - No agronomic compaction
 - Put seed into the ground in any weather
- Micro tillage
 - Cultivate for each individual seed position
- Use vertical or rotary seeding methods
 - Punch planting
- Seeding depth to moisture
 - Improve germination rates
- Permanent planting positions
 - Same place each year

Ultra light seeding robot

- Less than 40kPa (6PSI) under the contact patch does no agronomic damage even at field capacity
- Can seed the ground in any weather conditions

Crop scouting

- Working with agronomists by giving near-real-time data over the whole farm
- UGVs (Unmanned Ground Vehicle)
 - Phenotyping robots
 - Crop trials to evaluate new genotypes
 - Scouting robots
 - Targeted agronomic measurements
- UAVS (Unmanned Aerial Vehicle)
 - Rapid assessment technique
 - High resolution imagery
 - Visible: Crop cover, growth rates, flooding extent, late emergence, weed patches, rabbit damage, nutrient imbalance
 - Non-visible: NDVI, Thermal, multispectral
 - Sensor limited by weight and power

July 2017 - www.ifmaonline.org - Congress Proceedings

2nd Generation UAS

- Drones for farming NCPF SiG (400 members)
- Ag training for drone pilots
- Picocopters to megacopters
- Tethered UAVs
- Self docking
- Automated logistics
- New engines
- Self guided
- Collaborative M2M

July 2017 - www.ifmaonline.org - Congress Proceedings

Agricultural Drone Centre

- Part of the NCPF
- Working with
 - Civil Aviation Authority
 - Chemical Regulation Directorate
 - Many drone companies
- Spray testing laboratory to accredit drones to use spray in the UK

Crop scouting; Dionysus robot

- Crop scouting robot for vineyards
- Build by Harper Adams MEng students for the University of Athens
- Software Architecture for Agricultural Robots
- Thermal camera for irrigation status
- Multispectral camera for nutrient status
- LIDAR for canopy extent and density

Sub-canopy scouting robot

July 2017 - www.ifmaonline.org - Congress Proceedings

21st International Farm Management Congress, John McIntyre Conference Centre, Edinburgh, Scotland, United Kingdom

Robotic Weeding

- Mechanical weeding
- Micro droplet spraying
- Laser weeding

The Royal Veterinary and Agricultural University

Intra-row Weeding with a Cycloid Hoe

Denmark, May 2006

MicroDot spraying

- Machine vision recognises the leaves of the plant in real time and records the position and speed
- MicroDot sprayer puts chemical only on the leaf of the plant saving 99.99% by volume

Laser weeding

- Machine vision recognises the growing point of the weed
 - Laser kills the weed by heating the growing point
 - Saving 100% herbicide
 - Harper Adams University is now building a real-time robot to laser and microdot weeds
 - Funded by a major agrochemical company 2014-2017

Autonomous tractor

Selective harvesting

- Between 20- 60% of harvested crop is not of saleable quality
- Only harvest that part of the crop which has 100% saleable characteristics
 - Phased harvesting, immediate replacement seeding
- Pre harvest quality and quantity assessment
 - Grading / packing / sorting at the point of harvest
 - Add value to products on-farm
 - Grade for quality
 - Size, sweetness, ripeness, shelf life, protein etc
 - Minimise off farm grading and sorting
 - Add value to on-farm products

Selective harvesting and grading strawberries

- Stereo vision for size and position
- Picking and grading at the point of harvest

Conclusions

- Mobile robots will be used commercially in the arable and horticultural sectors
- Working with two start-up companies
- Robots will be very disruptive but will have significant benefits
- Increased yield will come though improving smaller fields
- We are now designing the new systems and trying to understand the implications
- We are always interested in partnerships

July 2017 - www.ifmaonline.org - Congress Proceedings

Incorrect assumptions about robotic agriculture

- Robots are only for big fields
 - Big fields have big equipment that is very efficient.
 - Small fields cannot be currently used with the same efficiency
 - Small robots can increase the efficiency in small fields
- Robots will be too expensive
 - Current big tractors need investment of £100k+ which farmers already pay, plus driver costs
 - Cost of a robot will be about £20-50k and will not need a 'driver'
- Robots will reduce rural workforce
 - Big tractors have already reduced the rural workforce from what they were 70 years ago.
 - We will still need a farm manager to plan the tasks
 - Still need an agronomist but will be supported by better real-time information
 - The tractor driver will need new skills to become a robot operator.
 - Seasonal labour will be significantly reduced
- Robots will do everything
 - Robots will be used in niche areas like weeding and scouting
 - Large manned tractors will still be needed for road work and heavy logistics
- Robots are not safe
 - New system has seven levels of safety
 - Driverless cars on road, why not tractors?
 - A person is always in charge of the robots via a smartphone.
- Robots are too complex and will need an operator with a PhD
 - With good design a robot should be as easy to use as a smartphone
 - Leapfrog technology
 - Embedded smarts
- Robots are for the future, not now
 - Why not now?

- Traditional business model
 - Build product and sell it
 - e.g. weedkiller
 - Loss of control after sale
 - Open to misuse
- New business model
 - Sell service with embedded product
 - E.g. eradication of weeds
 - Can use any technology (such as laser weeding)
 - Continual feedback on product and its use
 - Easily updated